
	 www.StickyMinds.com	 DECEMBER 2008	 BETTER SOFTWARE 	 47

Theory isn’t enough 

when you’re trying to 

make a career out of 

testing software.

learn through reading 
and practice the more 
I realize how much 
there is still to learn 
and how many undis-
covered paths remain 
for me to explore.

Phillip Armour first 
wrote about the five 
orders of ignorance 
(5OI) in 2000 [1]. The 
0th order of ignorance 
(the orders are 0 based, of course, be-
cause Armour is a programmer) is lack 
of ignorance. You have 0OI when you 
know something (“I know how to speak 
English”). The 1st order of ignorance is 
lack of knowledge. You have 1OI when 
you know you don’t know something 
(“I know that I can’t speak Chinese”). 
The 2nd order of ignorance is lack of 
awareness. You have 2OI when you are 
unaware of what you don’t know. The 
3rd order of ignorance is lack of process. 
You have 3OI when you don’t even have 
a way to figure out what you don’t know. 
The final level of ignorance—meta igno-
rance (4OI)—is when you don’t know 
about the levels of ignorance (a level of 
ignorance that readers of this article can 
cross off now).

When I first heard of the five levels of 
ignorance, I realized that testing lives at 
3OI and 2OI. Our job in examining soft-
ware is to figure out what questions to 
ask about the software and then to de-
termine what the answers are. Chances 
are that the programmers with whom 
you work don’t write your test cases for 
you or suggest, for example, that you 
“try a really big number in this field.” 
Instead, we testers examine the software, 
hoping to learn enough about it to ask 
that question, and subsequently, find the 
answer. Our job as testers isn’t to find 
bugs; it’s to find knowledge!

The more I think about this, the more 
concerned I get about testers who live 
entirely at 0OI and think they know all 
the answers—not in a snobby, know-

it-all kind of way but in a 
way that relies only on the 
knowledge they have today 
in order to test each new 
piece of software that comes 
their way. The state of the art 
in test has not kept up with 
advances in product design 
and implementation because 
too many testers have stayed 
inside their 0OI comfort 
zone when their true place in 

the food chain is 3OI. Too many testers 
think that they “get” testing or that they 
know “enough” to do the right thing. 
If you think you have testing all figured 
out, you are part of the problem!

The 3OI processes, of course, con-
tribute new knowledge to software en-
gineering, but the consummate 3OI pro-
cess is the critical thinking of intelligent 
and experienced testers. Testers who can 
navigate the unknowns of 3OI will el-
evate the science and craft of testing to 
a level it deserves but too often does not 
enjoy. The greatest testers I know realize 
there is much more to learn about testing 
than they know today. They know that 
there are questions they haven’t thought 
of yet and know that there will always 
be new means to discover these ques-
tions. They never assume that they know 
“enough” about testing to always make 
the best choices. Obviously, if you are 
reading this article, you have some in-
terest in learning more about testing, but 
how often do you challenge yourself to 
discover something new about testing? 
Do you have a vision of what software 
testing can become and strive toward 
that vision? Or do you think that merely 
repeating and refining what you’re al-
ready doing is enough? 

A passion for learning drives the 
work of every great tester I know. What 
drives you? {end}

References: 
Armour, Phillip G. “The Five Orders of Igno-
rance.” Communications of the ACM, October 
2000/Vol. 43, No. 10. 

The Last Word

The Abolition of Ignorance
by Alan Page

I’ve been a software tester for more than 
fifteen years, but I still remember when 
I realized I didn’t really know anything 
about testing. It’s not that I was a bad 
tester. I found a ton of bugs, I used au-
tomation and other test tools appropri-
ately (most of the time), and I received 
great feedback from management. De-
spite these signs of success, three or so 
years into my testing career, I decided 
I would like to study testing. Since I 
was getting to a point where I thought 
testing may actually become a career for 
me, I decided I wanted to learn more 
about the hows and whys of testing 
and build a formal base of knowledge. 
I started by reading a book on testing 
that a colleague recommended. In many 
ways it opened my eyes. I felt that the 
knowledge I gained from this book, 
combined with my experience, would 
make me some sort of “super-tester” (it 
didn’t). A few weeks later, flushed with 
success, I read another book on testing. I 
enjoyed reading the second one, too, but 
it stressed different practices and even 
contradicted the first book in places. 

Now, I was confused. 
By the time I completed a third book 

on testing, two things happened. The 
first was that I realized not every book 
on testing was very good at teaching 
testing. The second was that I began to 
form my own opinions on what works 
and what doesn’t when testing software. 
I’ve read dozens of books and thousands 
of articles since then on testing and on 
software engineering, and all I’ve fig-
ured out from all this reading is that 
I’ve barely scratched the surface of what 
there is to know about testing. 

I question much of what I read now—
not necessarily as a skeptic who thinks 
that none of this stuff really works in 
practice but as a learner who wonders 
how the ideas might apply to situations 
I have experienced or could imagine. 
Theory isn’t enough when you’re trying 
to make a career out of testing software. 
So I try things. I experiment. The more I 


