

Beautiful Testing

Edited by Tim Riley and Adam Goucher

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Beautiful Testing
Edited by Tim Riley and Adam Goucher

Copyright © 2010 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also

available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/

institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Genevieve d’Entremont
Proofreader: Sarah Schneider

Indexer: John Bickelhaupt
Cover Designer: Mark Paglietti
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
October 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Beautiful Testing, the image of

a beetle, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no

responsibility for errors or omissions, or for damages resulting from the use of the information contained

herein.

ISBN: 978-0-596-15981-8

[V]

1255122093

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

All royalties from this book will be donated to the
UN Foundation’s Nothing But Nets campaign to
save lives by preventing malaria, a disease that
kills millions of children in Africa each year.

C O N T E N T S

PREFACE xiii
by Adam Goucher

Part One BEAUTIFUL TESTERS

1 WAS IT GOOD FOR YOU? 3
by Linda Wilkinson

2 BEAUTIFUL TESTING SATISFIES STAKEHOLDERS 15
by Rex Black

For Whom Do We Test? 16
What Satisfies? 18
What Beauty Is External? 20
What Beauty Is Internal? 23
Conclusions 25

3 BUILDING OPEN SOURCE QA COMMUNITIES 27
by Martin Schröder and Clint Talbert

Communication 27
Volunteers 28
Coordination 29
Events 32
Conclusions 35

4 COLLABORATION IS THE CORNERSTONE OF BEAUTIFUL PERFORMANCE TESTING 37
by Scott Barber

Setting the Stage 38
100%?!? Fail 38
The Memory Leak That Wasn’t 45
Can’t Handle the Load? Change the UI 46
It Can’t Be the Network 48
Wrap-Up 51

Part Two BEAUTIFUL PROCESS

5 JUST PEACHY: MAKING OFFICE SOFTWARE MORE RELIABLE WITH FUZZ TESTING 55
by Kamran Khan

User Expectations 55
What Is Fuzzing? 57
Why Fuzz Test? 57

vii

Fuzz Testing 60
Future Considerations 65

6 BUG MANAGEMENT AND TEST CASE EFFECTIVENESS 67
by Emily Chen and Brian Nitz

Bug Management 68
The First Step in Managing a Defect Is Defining It 70
Test Case Effectiveness 77
Case Study of the OpenSolaris Desktop Team 79
Conclusions 83
Acknowledgments 83
References 84

7 BEAUTIFUL XMPP TESTING 85
by Remko Tronçon

Introduction 85
XMPP 101 86
Testing XMPP Protocols 88
Unit Testing Simple Request-Response Protocols 89
Unit Testing Multistage Protocols 94
Testing Session Initialization 97
Automated Interoperability Testing 99
Diamond in the Rough: Testing XML Validity 101
Conclusions 101
References 102

8 BEAUTIFUL LARGE-SCALE TEST AUTOMATION 103
by Alan Page

Before We Start 104
What Is Large-Scale Test Automation? 104
The First Steps 106
Automated Tests and Test Case Management 107
The Automated Test Lab 111
Test Distribution 112
Failure Analysis 114
Reporting 114
Putting It All Together 116

9 BEAUTIFUL IS BETTER THAN UGLY 119
by Neal Norwitz, Michelle Levesque, and Jeffrey Yasskin

The Value of Stability 120
Ensuring Correctness 121
Conclusions 127

10 TESTING A RANDOM NUMBER GENERATOR 129
by John D. Cook

What Makes Random Number Generators Subtle to Test? 130
Uniform Random Number Generators 131

viii C O N T E N T S

Nonuniform Random Number Generators 132
A Progression of Tests 134
Conclusions 141

11 CHANGE-CENTRIC TESTING 143
by Murali Nandigama

How to Set Up the Document-Driven, Change-Centric Testing Framework? 145
Change-Centric Testing for Complex Code Development Models 146
What Have We Learned So Far? 152
Conclusions 154

12 SOFTWARE IN USE 155
by Karen N. Johnson

A Connection to My Work 156
From the Inside 157
Adding Different Perspectives 159
Exploratory, Ad-Hoc, and Scripted Testing 161
Multiuser Testing 163
The Science Lab 165
Simulating Real Use 166
Testing in the Regulated World 168
At the End 169

13 SOFTWARE DEVELOPMENT IS A CREATIVE PROCESS 171
by Chris McMahon

Agile Development As Performance 172
Practice, Rehearse, Perform 173
Evaluating the Ineffable 174
Two Critical Tools 174
Software Testing Movements 176
The Beauty of Agile Testing 177
QA Is Not Evil 178
Beauty Is the Nature of This Work 179
References 179

14 TEST-DRIVEN DEVELOPMENT: DRIVING NEW STANDARDS OF BEAUTY 181
by Jennitta Andrea

Beauty As Proportion and Balance 181
Agile: A New Proportion and Balance 182
Test-Driven Development 182
Examples Versus Tests 184
Readable Examples 185
Permanent Requirement Artifacts 186
Testable Designs 187
Tool Support 189
Team Collaboration 192
Experience the Beauty of TDD 193
References 194

C O N T E N T S ix

15 BEAUTIFUL TESTING AS THE CORNERSTONE OF BUSINESS SUCCESS 195
by Lisa Crispin

The Whole-Team Approach 197
Automating Tests 199
Driving Development with Tests 202
Delivering Value 206
A Success Story 208
Post Script 208

16 PEELING THE GLASS ONION AT SOCIALTEXT 209
by Matthew Heusser

It’s Not Business…It’s Personal 209
Tester Remains On-Stage; Enter Beauty, Stage Right 210
Come Walk with Me, The Best Is Yet to Be 213
Automated Testing Isn’t 214
Into Socialtext 215
A Balanced Breakfast Approach 227
Regression and Process Improvement 231
The Last Pieces of the Puzzle 231
Acknowledgments 233

17 BEAUTIFUL TESTING IS EFFICIENT TESTING 235
by Adam Goucher

SLIME 235
Scripting 239
Discovering Developer Notes 240
Oracles and Test Data Generation 241
Mindmaps 242
Efficiency Achieved 244

Part Three BEAUTIFUL TOOLS

18 SEEDING BUGS TO FIND BUGS: BEAUTIFUL MUTATION TESTING 247
by Andreas Zeller and David Schuler

Assessing Test Suite Quality 247
Watching the Watchmen 249
An AspectJ Example 252
Equivalent Mutants 253
Focusing on Impact 254
The Javalanche Framework 255
Odds and Ends 255
Acknowledgments 256
References 256

19 REFERENCE TESTING AS BEAUTIFUL TESTING 257
by Clint Talbert

Reference Test Structure 258

x C O N T E N T S

Reference Test Extensibility 261
Building Community 266

20 CLAM ANTI-VIRUS: TESTING OPEN SOURCE WITH OPEN TOOLS 269
by Tomasz Kojm

The Clam Anti-Virus Project 270
Testing Methods 270
Summary 283
Credits 283

21 WEB APPLICATION TESTING WITH WINDMILL 285
by Adam Christian

Introduction 285
Overview 286
Writing Tests 286
The Project 292
Comparison 293
Conclusions 293
References 294

22 TESTING ONE MILLION WEB PAGES 295
by Tim Riley

In the Beginning… 296
The Tools Merge and Evolve 297
The Nitty-Gritty 299
Summary 301
Acknowledgments 301

23 TESTING NETWORK SERVICES IN MULTIMACHINE SCENARIOS 303
by Isaac Clerencia

The Need for an Advanced Testing Tool in eBox 303
Development of ANSTE to Improve the eBox QA Process 304
How eBox Uses ANSTE 307
How Other Projects Can Benefit from ANSTE 315

A CONTRIBUTORS 317

INDEX 323

C O N T E N T S xi

Preface

I DON’T THINK BEAUTIFUL TESTING COULD HAVE BEEN PROPOSED , much less published, when

I started my career a decade ago. Testing departments were unglamorous places, only slightly

higher on the corporate hierarchy than front-line support, and filled with unhappy drones

doing rote executions of canned tests.

There were glimmers of beauty out there, though.

Once you start seeing the glimmers, you can’t help but seek out more of them. Follow the trail

long enough and you will find yourself doing testing that is:

• Fun

• Challenging

• Engaging

• Experiential

• Thoughtful

• Valuable

Or, put another way, beautiful.

Testing as a recognized practice has, I think, become a lot more beautiful as well. This is partly

due to the influence of ideas such as test-driven development (TDD), agile, and craftsmanship,

but also the types of applications being developed now. As the products we develop and the

xiii

ways in which we develop them become more social and less robotic, there is a realization that

testing them doesn’t have to be robotic, or ugly.

Of course, beauty is in the eye of the beholder. So how did we choose content for Beautiful

Testing if everyone has a different idea of beauty?

Early on we decided that we didn’t want to create just another book of dry case studies. We

wanted the chapters to provide a peek into the contributors’ views of beauty and testing.

Beautiful Testing is a collection of chapter-length essays by over 20 people: some testers, some

developers, some who do both. Each contributor understands and approaches the idea of

beautiful testing differently, as their ideas are evolving based on the inputs of their previous

and current environments.

Each contributor also waived any royalties for their work. Instead, all profits from Beautiful

Testing will be donated to the UN Foundation’s Nothing But Nets campaign. For every $10 in

donations, a mosquito net is purchased to protect people in Africa against the scourge of

malaria. Helping to prevent the almost one million deaths attributed to the disease, the large

majority of whom are children under 5, is in itself a Beautiful Act. Tim and I are both very

grateful for the time and effort everyone put into their chapters in order to make this happen.

How This Book Is Organized
While waiting for chapters to trickle in, we were afraid we would end up with different versions

of “this is how you test” or “keep the bar green.” Much to our relief, we ended up with a diverse

mixture. Manifestos, detailed case studies, touching experience reports, and war stories from

the trenches—Beautiful Testing has a bit of each.

The chapters themselves almost seemed to organize themselves naturally into sections.

Part I, Beautiful Testers

Testing is an inherently human activity; someone needs to think of the test cases to be

automated, and even those tests can’t think, feel, or get frustrated. Beautiful Testing therefore

starts with the human aspects of testing, whether it is the testers themselves or the interactions

of testers with the wider world.

Chapter 1, Was It Good for You?

Linda Wilkinson brings her unique perspective on the tester’s psyche.

Chapter 2, Beautiful Testing Satisfies Stakeholders

Rex Black has been satisfying stakeholders for 25 years. He explains how that is beautiful.

Chapter 3, Building Open Source QA Communities

Open source projects live and die by their supporting communities. Clint Talbert and

Martin Schröder share their experiences building a beautiful community of testers.

xiv P R E F A C E

Chapter 4, Collaboration Is the Cornerstone of Beautiful Performance Testing

Think performance testing is all about measuring speed? Scott Barber explains why, above

everything else, beautiful performance testing needs to be collaborative.

Part II, Beautiful Process

We then progress to the largest section, which is about the testing process. Chapters here give

a peek at what the test group is doing and, more importantly, why.

Chapter 5, Just Peachy: Making Office Software More Reliable with Fuzz Testing

To Kamran Khan, beauty in office suites is in hiding the complexity. Fuzzing is a test

technique that follows that same pattern.

Chapter 6, Bug Management and Test Case Effectiveness

Brian Nitz and Emily Chen believe that how you track your test cases and bugs can be

beautiful. They use their experience with OpenSolaris to illustrate this.

Chapter 7, Beautiful XMPP Testing

Remko Tronçon is deeply involved in the XMPP community. In this chapter, he explains

how the XMPP protocols are tested and describes their evolution from ugly to beautiful.

Chapter 8, Beautiful Large-Scale Test Automation

Working at Microsoft, Alan Page knows a thing or two about large-scale test automation.

He shares some of his secrets to making it beautiful.

Chapter 9, Beautiful Is Better Than Ugly

Beauty has always been central to the development of Python. Neal Noritz, Michelle

Levesque, and Jeffrey Yasskin point out that one aspect of beauty for a programming

language is stability, and that achieving it requires some beautiful testing.

Chapter 10, Testing a Random Number Generator

John D. Cook is a mathematician and applies a classic definition of beauty, one based on

complexity and unity, to testing random number generators.

Chapter 11, Change-Centric Testing

Testing code that has not changed is neither efficient nor beautiful, says Murali

Nandigama; however, change-centric testing is.

Chapter 12, Software in Use

Karen N. Johnson shares how she tested a piece of medical software that has had a direct

impact on her nonwork life.

Chapter 13, Software Development Is a Creative Process

Chris McMahon was a professional musician before coming to testing. It is not surprising,

then, that he thinks beautiful testing has more to do with jazz bands than manufacturing

organizations.

Chapter 14, Test-Driven Development: Driving New Standards of Beauty

Jennitta Andrea shows how TDD can act as a catalyst for beauty in software projects.

P R E F A C E xv

Chapter 15, Beautiful Testing As the Cornerstone of Business Success

Lisa Crispin discusses how a team’s commitment to testing is beautiful, and how that can

be a key driver of business success.

Chapter 16, Peeling the Glass Onion at Socialtext

Matthew Heusser has worked at a number of different companies in his career, but in this

chapter we see why he thinks his current employer’s process is not just good, but beautiful.

Chapter 17, Beautiful Testing Is Efficient Testing

Beautiful testing has minimal retesting effort, says Adam Goucher. He shares three

techniques for how to reduce it.

Part III, Beautiful Tools

Beautiful Testing concludes with a final section on the tools that help testers do their jobs more

effectively.

Chapter 18, Seeding Bugs to Find Bugs: Beautiful Mutation Testing

Trust is a facet of beauty. The implication is that if you can’t trust your test suite, then

your testing can’t be beautiful. Andreas Zeller and David Schuler explain how you can

seed artificial bugs into your product to gain trust in your testing.

Chapter 19, Reference Testing As Beautiful Testing

Clint Talbert shows how Mozilla is rethinking its automated regression suite as a tool for

anticipatory and forward-looking testing rather than just regression.

Chapter 20, Clam Anti-Virus: Testing Open Source with Open Tools

Tomasz Kojm discusses how the ClamAV team chooses and uses different testing tools,

and how the embodiment of the KISS principle is beautiful when it comes to testing.

Chapter 21, Web Application Testing with Windmill

Adam Christian gives readers an introduction to the Windmill project and explains how

even though individual aspects of web automation are not beautiful, their combination is.

Chapter 22, Testing One Million Web Pages

Tim Riley sees beauty in the evolution and growth of a test tool that started as something

simple and is now anything but.

Chapter 23, Testing Network Services in Multimachine Scenarios

When trying for 100% test automation, the involvement of multiple machines for a single

scenario can add complexity and non-beauty. Isaac Clerencia showcases ANSTE and

explains how it can increase beauty in this type of testing.

Beautiful Testers following a Beautiful Process, assisted by Beautiful Tools, makes for Beautiful

Testing. Or at least we think so. We hope you do as well.

xvi P R E F A C E

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book

in your programs and documentation. You do not need to contact us for permission unless

you’re reproducing a significant portion of the code. For example, writing a program that uses

several chunks of code from this book does not require permission. Selling or distributing a

CD-ROM of examples from O’Reilly books does require permission. Answering a question by

citing this book and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s documentation does

require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,

publisher, and ISBN. For example: “Beautiful Testing, edited by Tim Riley and Adam Goucher.

Copyright 2010 O’Reilly Media, Inc., 978-0-596-15981-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel

free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search
over 7,500 technology and creative reference books and videos to find the
answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read

books on your cell phone and mobile devices. Access new titles before they are available for

print, and get exclusive access to manuscripts in development and post feedback for the

authors. Copy and paste code samples, organize your favorites, download chapters, bookmark

key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital

access to this book and others on similar topics from O’Reilly and other publishers, sign up for

free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

P R E F A C E xvii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at:

http://oreilly.com/catalog/9780596159818

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://oreilly.com

Acknowledgments
We would like to thank the following people for helping make Beautiful Testing happen:

• Dr. Greg Wilson. If he had not written Beautiful Code, we would never have had the idea

nor a publisher for Beautiful Testing.

• All the contributors who spent many hours writing, rewriting, and sometimes rewriting

again their chapters, knowing that they will get nothing in return but the satisfaction of

helping prevent the spread of malaria.

• Our technical reviewers: Kent Beck, Michael Feathers, Paul Carvalho, and Gary Pollice.

Giving useful feedback is sometimes as hard as receiving it, but what we got from them

certainly made this book more beautiful.

• And, of course, our wives and children, who put up with us doing “book stuff” over the

last year.

—Adam Goucher

xviii P R E F A C E

http://oreilly.com/catalog/9780596159818
mailto:bookquestions@oreilly.com
http://oreilly.com
http://oreilly.com/catalog/9780596510046

C H A P T E R E I G H T

Beautiful Large-Scale Test Automation

Alan Page

AUTOMATED TESTING CAN BE MUCH MORE THAN SIMPLY writing and running tests that operate

without human intervention. Alas, for many testers, automated testing consists only of the

manual generation of test scripts or code that executes some specified test scenario or piece of

product functionality. Consideration of the logistics of running the tests is too often an

afterthought of the automation process.

Most testers are familiar with the claim that automated testing has the potential to save time.

However, in many cases, test automation doesn’t actually save the amount of time that testers

and their management team have anticipated. In reality, many automation attempts fail

because other than the actual test execution, none of the remainder of the process is automatic.

For automation to be successful, especially on a large scale, the entire end-to-end process—

from the moment the tester completes the authoring of the test until results are analyzed and

available for viewing—must be automatic. Without this level of automation, the amount of

time testers spend monitoring automation systems will quickly grow out of hand.

When I was young, my parents went to a fireworks stand and bought one of those big packages

of fireworks. We eagerly waited until it got dark, and then our family went outside on our

patio and began our show. We had quite a variety of explosions and showers of sparks and

were generally entertained. It was a bit of a pain sometimes to try to find some of the fuses in

the dark, and a few duds disappointed us, but for the most part, we were adequately amused.

A few years later, I attended my first professional fireworks show. Not only were the explosions

and sparkles huge, but everything ran a million times smoother than our home fireworks show.

103

People oohed and aahed at the shapes and marveled over how well the show was synchronized

to music. There was nothing wrong with our home fireworks show, but the professional

show—due to the size, complexity, and how smoothly it ran—was truly beautiful.

A system where testers spend the majority of their time monitoring progress, examining errors

(aka “duds”), and pushing tests and their artifacts from one stage to the next is far from

beautiful. Beauty occurs when the entire system reaches a point of automation at which the

tester can concentrate on what they do best: testing software.

Before We Start
For this topic, a few words on the approach to automation are in order. These days, there’s a

bit of a controversy in the testing world centered on when automated tests help test teams and

when they stop teams dead in their tracks. Testers are worried about what to automate and

how much to automate. Test managers are worried about showing ROI on the investment

they’ve made on automation tools and in writing the tests, and in leveraging their automation

investment to the fullest potential.

These testers and their managers often struggle as they try to determine how much of their

testing effort they should automate. I have an answer to this dilemma that works for every test

team, a metric they can use to make sure they are automating the right amount of tests. The

metric is the same for every team, and unlike most metrics, it is always correct. You should

automate 100% of the tests that should be automated. The metric itself is simple (albeit inherently

un-actionable); the difficulty lies in determining exactly which tests to automate. Product

architecture, stakeholders, schedule, and many other factors can help lead test teams to the

correct automation decisions. I see many automation attempts fail because testers spend too

much time automating (or attempting to automate) behaviors or scenarios where automation

simply isn’t worth the effort in the first place. Likewise, test automation efforts also can fail

when testers fail to automate tasks that are clearly prime targets for automation. Deciding

which tests to automate is extremely difficult and up to the test team and stakeholders to

determine for their particular situation (and fortunately for the attention span of the reader,

far beyond the scope of this chapter).

Also, note that for the sake of this essay, I’m referring to testing performed by an independent

test team. Automation is the perfect and commonly acceptable solution for developer-written

unit tests. The difficult decisions about what tests to automate typically occur in areas such as

end-to-end scenarios or advanced GUI manipulation, or other areas where a human set of eyes

and a brain are sometimes the most efficient oracle for determining success.

What Is Large-Scale Test Automation?
On a small software product, it may be possible for a single tester to write and run automated

tests from his desk and report results via email or by manually updating a web page or

104 C H A P T E R E I G H T

spreadsheet. Testers are also likely responsible for entering bugs for any issues discovered by

the tests, and verifying that resolved bugs are fixed. For a system to be capable of handling

thousands of tests or more distributed across hundreds of machines, the system must, at every

step—from the moment test authoring is complete to the point where results are available—

be completely automatic. Manual support for automated testing can take a significant amount

of testing time away from the test team. Before we discuss implementation and architecture

details of such a system, it will be helpful to discuss the workflow and the life of tests in an

automation system.

The Basics of a Test Automation System

Even the bare necessities of a beautiful automation system enable efficiencies from end to end,

but automation systems come in all shapes, sizes, and ranges of splendor. For all test teams

that use automated tests, some basic steps are common. Figure 8-1 shows a basic automation

test workflow.

FIGURE 8-1. Automated test life cycle workflow

Somewhere at or near the beginning of testing, a tester will write one or more automated tests.

Testers may create test suites (a set of tests targeting a particular area or small feature) as well.

They may write scripts, such as JavaScript, or create a compiled binary written in a language

such as C# or C++. At some point in the process, the tests inevitably execute and a process (or

person) tracks test results (e.g., “Pass” or “Fail”). Once the test results are available, the tester

enters newly discovered errors into the bug tracking system, and may cross-reference fixed

bugs to ensure that the relevant tests are now correctly passing.

The problem with the basics is that there are numerous scenarios where manual intervention

may be necessary. Once the tester writes his tests, it may be his responsibility to copy the scripts

or binaries (along with any needed support files) to a network share where other testers can

access them. In other cases, the tester may be responsible for running the tests himself,

analyzing the results, and reporting. Often, the tester is also responsible for entering bugs to

correspond with failed tests, and verifying that bugs resolved as fixed truly are fixed.

A Beautiful System

The end-to-end automation process can certainly be more eye-catching. Let’s look at what a

more sophisticated automation system and process might look like.

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 105

Once the tester completes the authoring of their code or script, they check it into a source

control management system (SCM), where an automated build process builds the tests. Once

the building process is complete, the system copies tests and support files to a common location

where testers (as well as the tools that make up the automation system) can access them.

Configuration of the systems used for running the tests happens automatically. The

deployment to these machines and subsequent execution occurs automatically. A common

database stores all test results for easy reporting and analysis. Finally, the system automatically

records test failures in the bug database.

Even in a system such as this, there are many stages where nonautomated tasks can begin to

monopolize a tester’s time. I’ve personally seen many test teams create thousands of automated

tests thinking that they will save massive amounts of testing time, but end up spending

countless hours on the work surrounding those same automated tests. Indeed, on many teams,

the testers spend so much time babysitting tests and analyzing test results that they have little

time left for actual testing.

The First Steps
The first step for success is simple: write great tests. Many test teams set themselves up for

failure by holding the quality bar for their test code to much lower standards than their product

code. Teams that write poor tests in an effort to save time almost always end up putting a large

effort into maintaining their tests and investigating failed tests.

Test code must be easily maintainable. Whether the tests are going to be around for 10 days

or 10 years, on a large team, chances are that someone other than the author will have to read,

debug, or modify the code at some point. On many teams I’ve observed, once authoring of an

automated test and integration of that test into the system are complete, that test remains in

the system forever (unless, of course, the team removes the component under test from the

product). Whether or not the “once a test, always a test” concept is appropriate (as well as

mitigation techniques for the issue) is a topic for a different essay.

Code reviews and static analysis of the test code are also important. Hardcoded paths to test

servers or hardcoded usernames and passwords are frequent causes of fragile tests, as are

hardcoded resource strings that fail the first time the test runs on non-English builds. Tools or

scripts that analyze source code at or extremely close to compile time are essential for detecting

many common programming errors such as these.

Finally, it’s critical that test code is under source control and builds in a central location. Source

control eases maintenance by enabling testers to investigate an entire history of changes to test

code, overlaying infrastructure or “collateral” (noncode files used by the tests, such as media

files or input data). Frequent builds or continuous integration are just as applicable to test code

as they are to product code. Central builds allow the latest tests to run on every build of the

production code, and ensure that tests are available from a central location. If testers build their

own tests and are responsible for copying the tests to a server, mistakes are eventually bound

106 C H A P T E R E I G H T

to occur. A central build also enables the embedding of consistent version information into

every test. Version information greatly simplifies debugging when tests suddenly begin to fail

or behave differently than expected.

Test Infrastructure Is Critical

All of the statements in the previous section apply directly to test infrastructure and tools.

Chances are that if your team has a system similar to the one described in this essay, the

development of at least some parts of the system occurs in-house. Moreover, these testing tools

need to be inherently reliable and trusted. I have watched test teams struggle with poor tools

and spend time writing workarounds for poor implementation only to have their workarounds

break when someone finally gets around to updating the tools.

To that end, code reviews, unit testing, and acceptance testing are critical for all major pieces

of a test infrastructure. Nobody wants to use a test tool that wastes testers’ time, but nearly

everyone wants to use tools that are intuitive, reliable, and just work.

Test Collateral

Another mistake that many teams make is mismanagement of their test collateral. By collateral,

I mean data files, documents, add-ins, and any other bits of data used by the tests. It is vital to

ensure that all of these files are under source control, but even more critical to guarantee that

these files are available in a location that satisfies two key criteria. First, the files must be

available to the automated testing system. For example, files on a share accessible to the test

team members might not be available to the automation system if it has different access rights

on the network. Second, the collateral files need to be stored in a nontemporary location.

Sustained engineering or maintenance teams cringe when they inherit tests that attempt to

copy collateral from a server or share that doesn’t exist anymore.

Mitigation for this issue can include setting up a permanent server for test collateral or using

a database to store all collateral items. Regardless of the solution, including a plan for handling

test collateral is essential to ensure the robustness of the overall automation system.

Automated Tests and Test Case Management
As the number of test cases grows from hundreds to millions, test case management becomes

a critical element of the overall system. In order to track what every test is doing and which

tests are passing and failing, all tests need an associated unique identification number. At the

very least, assigning test ID numbers enables tracking of test results across a number of testing

configurations and scenarios, but it can also enable tracing of requirements or user stories to

the tests that verify these requirements or stories.

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 107

Unique IDs assigned to individual test cases are a minimum requirement, but implementing a

larger set of attributes associated with the test enables a much larger set of functionality.

Table 8-1 shows a small excerpt of test case IDs and samples of associated attributes in a test

case management system.

TABLE 8-1. Example test case management identification attributes

Test case ID Test binary or script Command line Configurations Tags

10001 perfTest.dll /entry:perfTestOne All Performance; Core

10002 perfTest.dll /entry:perfTestTwo Main Performance

11001 scenarioTest.exe /Persona:Peggy Main Scenarios

11002 scenarioTest.exe /Persona:Carl Mobile Scenarios

12001 Applications.js All Applications

13002 filesysBVT.dll /entry:createFileTests /full Main FileSystem; BVT

13023 filesysBVT.dll /entry:usbStorageTests USBStorage FileSystem; BVT; USB

A brief explanation of the fields in Table 8-1 follow:

Test case ID

This is a globally unique identifier assigned to each test. It’s not necessary for the numbers

to be sequential, but they must be unique. On large systems, a method for automatically

assigning unique IDs is necessary. The sidebar “Breaking It All Down” on page 109

explains some common methods for generating IDs.

Test binary or script

Automated tests generally “live” in a binary (EXE or DLL) or a script such as JavaScript,

QuickTest Pro, PowerShell, or Python. The system (or harness) that is responsible for

running the tests uses the binary or script name when executing the tests.

Command line

The test system uses the command line along with the binary or script name in order to

run the test. This enables customization, such as adding data references for data-driven

tests, or enables the isolation of single tests within larger test files so they can run

independently.

Configurations

Early in planning for a software application or system, the team will define the

configurations where the software will run. The configurations may be based on common

installation scenarios, languages, or compatible platforms. For example, a team building

a web portal and service may decide that valid test platforms are the last two versions of

Internet Explorer and Firefox, and the latest versions of Chrome, Safari, and Opera. It’s

likely that not every test will need to run on every platform. For some test teams, the

108 C H A P T E R E I G H T

excitement of test automation encourages them to run every test on every build. In the end,

what these teams find is an abundance of redundant test and an automated test pass that

takes far too long to complete to be helpful. Smartly tagging tests using pair-wise or other

methods of matrix reduction for determining test configurations is a smarter way to deploy

large-scale automation.

Tags

Tags are an optional method of describing additional metadata about the test. With tags

in place, both the test run and the reporting of results are easily customizable. Running

all “performance tests,” for example, is simple if all performance tests are tagged as such.

With multiple tags, it’s also just as easy to view all results with similar customizations,

or to drill down into special areas. Example queries could be “from all tests, view just

performance tests” or “from all File System tests, show BVT tests, except for those run on

Windows XP”.

BREAKING IT ALL DOWN
For test automation authors, it often makes architectural sense to create several tests within one test
binary. One of the most common approaches is to write test cases in a library (a .dll on Windows),
and use a “test harness” to run the tests within the DLL.

For managed (e.g., C# or VB.NET) test binaries, attributes are a commonly used method:

[TestCaseAttribute("Checkout Tests", ID=1)]
public TestResult BuyItems()
{
 TestResult.AddComment("executing Checkout Tests: Buy One Item");
 //implementation removed ...
 return TestResult.Pass;
}
[TestCaseAttribute("Checkout Tests", ID=2)]
public TestResult BuyItems()
{
 TestResult.AddComment("executing Checkout Tests: Buy Zero Items");
 //code removed ...
 return TestResult.Pass;
}

The harness (or “runner”) for managed code uses .NET Reflection to discover and run the tests in
the library. Unit test frameworks such as NUnit and MSTest use this method to execute tests
embedded in managed libraries.

Native (e.g., C or C++) binaries can use an alternate method of assigning tests to internal library
functions. One somewhat common method is to embed a table within the library containing function
addresses and other information about the test:

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 109

struct functionTable[] =
{
 { "Checkout tests: Buy one Item", 101, BuyItems, 1 },
 { "Checkout tests: Buy invalid number of items (0)", 102, BuyItems, 0 },
 { "Checkout tests: Buy negative number of items (-1)", 103, BuyItems, -1 },
 { "Checkout tests: Buying Scenario_One", 104, BuyingScenarioOne, 0 },
 // ...
};

The layout of the structure in this simple example contains four elements. They are:

Test description
A plain-text description of the test (likely used in logging and reporting).

Test ID
Unique identifier of the test.

Function pointer
Address of the function that the harness should call for this test.

Optional parameters
Value for the harness to pass to the function specified in the function pointer. This allows the
test author to create one test function that, depending on a parameter, executes multiple test
cases.

In the structure listed here, the description of the first test is “Checkout tests: Buy one Item,” the Test
ID is 104, the function called by the harness is BuyItems, and the parameter passed to the function
is the value 1. There are, of course, multiple methods for implementing a test harness in native code,
but this approach is simple and likely common.

A simple method that native code test harnesses can use to obtain information about tests in a
library is for each test library to have an entry point that dumps the test IDs and entry points for all
tests. Other than being useful for those wanting a quick method for determining which tests are in
a binary, automation tools can manually parse this data in order to create test cases in a test case
manager directly from the descriptions and unique IDs within a test binary:

void PrintFunctionTable()
{
 // display descriptions, entry points, test ID and parameters
 // for functionTable
}

There’s one remaining hurdle to address. In a large system with hundreds of test libraries written
by dozens of testers, it’s virtually impossible to guarantee that test IDs will be unique across the test
binaries or scripts. In the code excerpts shown earlier, for example, the managed function “Checkout
Tests” and the native function “Checkout tests: Buy one Item” are both assigned the same ID.

One solution is to assign a bank of test IDs to each tester. As long as testers only use the IDs assigned
to them, there’s no problem. The usefulness of this solution fades quickly as testers come and go on
a project, and as test libraries are shared between teams. A much better solution, of course, is an

110 C H A P T E R E I G H T

automated solution. One way to accomplish this is to use a test harness or a similar tool and take
steps such as the following in order to assign unique IDs to every test across an entire product:

1. Obtain the embedded test information from a library using the techniques described earlier
(Reflection for managed code or a function table for native code).

2. Create new unique IDs for each test in the library.

3. Store a mapping of the library name, original ID, and unique ID in a database (see Table 8-2).
The ID mappings enable uniqueness of IDs across a large system with minimal impact to the
individual testers’ authoring needs.

TABLE 8-2. Table with mapping of local IDs to global IDs

Library name Local ID Unique ID Command line (samples)

buyTest.dll 1 1000001 harness.exe buyTest.dll/id:1

buyTest.dll 2 1000002 harness.exe buyTest.dll/id:1

shoppingTest.dll 1 1100001 nHarness.exe shoppingTest.dll 1

shoppingTest.dll 2 1100002 nHarness.exe shoppingTest.dll 2

shoppingTest.dll 3 1100003 nHarness.exe shoppingTest.dll 3

The example here implies that there are (at least) two test harnesses in use by the test team, and that
they use different command lines to execute tests. Much more metadata about the tests (e.g., target
module, test history) is often included in the test metadata.

The point of thoughtful, planned test case management is to save time at later stages of the

automation process. If there’s a failure in a test, giving a tester even 30 minutes to “dig in” to

the failure and get more details is just too long. When there’s a failure, you need to know

exactly which test failed, what component it was testing, what caused the failure, and what

kind of test was running. Otherwise, you may as well shrug your shoulders and say, “I don’t

know, boss, something went wrong.” You can’t expect to run millions of tests and keep

everything in order without careful preparation and organization of the test data.

The Automated Test Lab
Tests need a place to run. Whether it’s 10 machines in an office or hundreds of machines in

an offsite data center, careful planning of the lab, including a test deployment strategy, is

crucial. For efficiency reasons, it makes sense to run tests in parallel across a bank of test

machines rather than sequentially on a single machine. If compatibility is a concern on the test

team, or if a variety of environments are required for any other reason, the number of machines

needed to complete automated testing in a reasonable amount of time grows quickly.

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 111

An efficiently configured test lab requires that there are enough machines available to allow

the automated tests to complete in a reasonable amount of time while not having so many

computers that machine utilization is too low. Test labs require computers, space, power, and

cooling. To best offset the cost of running the test lab, the machines in an automated test lab

should be as busy as possible. In addition to effectively using the machines in the test lab for

running automated tests, another tactic is to use the machines in the lab to run extended

versions of tests, stress tests, or specific customer scenarios between runs of the automated test

pass.

Deploying the Test Bed

The test lab will likely contain both physical machines and hosted virtual machines. Deploying

virtual machines is usually as simple as copying the appropriate virtual hard drives to the host

system. For physical machines, installing a fresh version of an operating system plus updates

and any necessary test applications is too time-consuming for practical test automation. If

testing requires a fresh operating installation to be in place, a more efficient approach for the

task of OS and application installation is via a disk-imaging tool that can quickly write an image

of an operating system plus relevant applications to disk. Any time computers in the lab are

being prepared for testing is time that they are not testing. Going through a 2-hour installation

process in order to run a 10-minute test is something that few people would consider efficient.

Minimizing test bed preparation time is a key part of increasing lab efficiency.

Other Considerations

Outside of the scope of testing technology but still necessary in order to deploy a successful test

lab are plans for maintenance, power, and cooling. A well-planned and well-organized lab will

save time if there are ever any problems with computer hardware or networking that need

investigation. It’s also certainly possible to house the test lab in a remote location. If this is the

case, the lab should include remote control power strips or a 24-hours-a-day service-level

agreement in the off chance that a machine hangs so hard during testing that normal means

of rebooting are not possible.

Test Distribution
Once the computers in the test lab are prepared, the next piece (and possibly the most

significant piece of the overall system) is to deploy and execute the tests. If you’ve invested in

a test lab filled with hundreds of test machines, you want to make sure machine utilization is

high—i.e., reducing as much as possible the amount of time those machines are idle, waiting

for the instruction to run tests.

112 C H A P T E R E I G H T

The flow chart in Figure 8-2 describes what decisions in test distribution may look like.

FIGURE 8-2. Test distribution flow chart

Depending on implementation, the first step is to take an inventory of either the test cases or

the configurations available for testing. When starting with test cases, the next step is to begin

deploying operating system and application configurations to test machines. When starting

with available configurations, the secondary step is matching un-run test cases with the current

set of machine configurations. In general, the former works a bit better when testing on a

known smaller set of configurations, whereas the latter is slightly more convenient when

dealing with a larger number of configurations.

One or more machines (sometimes called test controllers) are in charge of distributing the tests

to the waiting machines in the test labs. These machines implement a connection system using

sockets, message queues, or another multi-machine-aware synchronism mechanism.

Once preparation of the test computer is complete, the system copies the test to the target

machine and the test executes. A test controller waits for the test to complete (or hang or crash),

and then obtains the logfile from the test computer. The controller can parse the logfile for

results directly, but more often it sends the logfile back to the test case manager or to another

computer for parsing and analysis.

Yet another thing to consider in an automation system is a mechanism for knowing when the

test has completed. Waiting a fixed time is risky, as tests will take a varying amount of time to

complete on different systems. On the other hand, simply allotting a large amount of time for

a test to complete usually means that test machines are idle for extended lengths of time. For

tests that pass, the simple solution is for the test harness to signal the controller when the test

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 113

process exits. Additionally, associating a maximum time length for tests will trigger the

controller to obtain results and crash log information from the test machine if the test does not

complete (i.e., the harness does not signal completion) within the specified time.

Failure Analysis
If your tests are doing anything interesting, some of them are bound to fail. Some of the failures

will be because of product bugs, and others will be due to errors in the tests. Some failures in

related areas may be due to the same bug or, if you are running a single test on multiple

configurations, it may fail in multiple (or all) configurations. If the same test (e.g., “verify

widget control activates menu items”) fails on both Windows XP and Windows Vista, failure

analysis can analyze logfiles or other test collateral. If it determines that the same issue causes

both, it can report only one failure.

If a team has a lot of tests and any significant number are failing, the test team can end up

spending a lot of time investigating failed tests—so much time, in fact, that they have little time

left for actually testing. The unfortunate alternative to this analysis paralysis is to simply gloss

over the failure investigation and hope for the best (a practice that often ends with a critical

bug finding its way into a customer’s hands).

The solution to this predicament is to automate the analysis and investigation of test failures.

The primary item that enables analysis to work effectively is to have consistent logging

implemented across all tests. Matching algorithms implemented by the failure analysis system

can look for similarities in the logs among failed tests and identify failures potentially triggered

by the same root cause. The failure analysis system can also analyze call stacks or other

debugging information automatically for any tests that cause a crash.

When tests fail, the system can either create a new bug report or update an existing report,

depending on whether the failure is a new issue or already known (see Figure 8-3). An

excellent return on investment for large-scale test automation requires integration in all stages

of the automation, check-in, and bug tracking systems. A successful solution greatly reduces

the need for manual intervention in analyzing test results and failures.

Reporting
From management’s point of view, test results may be the most important artifact of the test

team. Current and relevant test results are another key aspect of an automation system, and

it is critical that test results are current, accurate, and easily available.

The role of an automation system in reporting is to ensure that the items in the previous

paragraph are possible. Tracking and tagging of test results is imperative. For any new failures

(automatic failure analysis should filter errors found in previous testing), information about

114 C H A P T E R E I G H T

the failure such as call stacks and logfiles need to be readily and quickly available so that

diagnosis of the issue by the tester is as efficient as possible.

THE TRUTH ABOUT TEST RESULTS
Every team I know of that runs automated tests also tracks test results closely. Most of these teams
have goals to reach or exceed, and a specified pass rate by the end of a milestone or by the time of
release. For example, they may have a goal of passing 95% of their tests, or passing 100% of their
“priority 1” test cases.

When teams tell me this, I always follow up by asking them what they do if they don’t reach their
goal. I ask, “What do you do if you’re at a milestone exit, and your pass rate is only 94%?” They
inevitably answer, “Oh, it depends on the failure. If the errors blocking us from reaching our goal
don’t meet the bar, we go ahead and move on.” This, I suppose, is better than telling me that they
just stop running that test (which is, unfortunately, something else I’ve heard in my career).

So, what is a reasonable goal for test pass rates? The answer is right in front of you. Rather than aim
for a magic number, what you really want is to investigate 100% of the failures and ensure that none
of those failures are serious enough to block the release. Of course, if you have a high pass rate, you
will have fewer failures to investigate, but I see nothing special in reaching a magic pass rate number
or letting the pursuit of that number drive your testing.

FIGURE 8-3. Automated failure analysis

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 115

Putting It All Together
Once the whole package is together, test automation truly begins to become a benefit to testing.

Testers can focus on one thing only: writing fantastic automated tests. These are tests that don’t

require constant maintenance, and tests that always generate meaningful actionable results.

Figure 8-4 shows one description of the entire automation system described here.

FIGURE 8-4. Large-scale test automation

Of course, if your automation system isn’t at this level of maturity, you shouldn’t expect it to

get there instantly. The implementation of the details, as well as the relevant cultural changes,

won’t happen overnight. As with any large-scale change, changing and growing a little at a

time is the best approach to turn an inefficient system into a beautiful one. Start by writing

better tests; poor test automation is one of the biggest obstacles to automation success. Also

make sure that test scripts and code are part of a source control system, and that tests go through

some sort of continuous integration process to ensure some level of test quality and

consistency.

116 C H A P T E R E I G H T

Then, set up a test lab for running automated tests. Start working out a way to distribute tests

to these machines and execute the tests. Then, begin gathering and aggregating simple high-

level test results. Next, find a way to log test failures in the bug database. After that, investigate

how you can automatically investigate failures and separate new failures from known failures.

Finally, look for any other areas where testers are investing significant time and energy keeping

the system running, and find a way to automate those tasks.

Before you know it, you will have a beautiful system. As it improves, testers on your team will

have more and more time to do what they are best at, and something that they were (hopefully)

hired to do in the first place: test software. Otherwise, despite thousands of automated tests and

testers who are perpetually busy, you actually may not end up with a well-tested product. And

that would be a sad ending to what should be a beautiful story.

B E A U T I F U L L A R G E - S C A L E T E S T A U T O M A T I O N 117

A P P E N D I X

Contributors

JENNITTA ANDREA has been a multifaceted, hands-on practitioner (analyst, tester, developer,

manager), and coach on over a dozen different types of agile projects since 2000. Naturally a

keen observer of teams and processes, Jennitta has published many experience-based papers

for conferences and software journals, and delivers practical, simulation-based tutorials and

in-house training covering agile requirements, process adaptation, automated examples, and

project retrospectives. Jennitta’s ongoing work has culminated in international recognition as

a thought leader in the area of agile requirements and automated examples. She is very active

in the agile community, serving a third term on the Agile Alliance Board of Directors, director

of the Agile Alliance Functional Test Tool Program to advance the state of the art of automated

functional test tools, member of the Advisory Board of IEEE Software, and member of many

conference committees. Jennitta founded The Andrea Group in 2007 where she remains

actively engaged on agile projects as a hands-on practitioner and coach, and continues to bridge

theory and practice in her writing and teaching.

SCOTT BARBER is the chief technologist of PerfTestPlus, executive director of the Association

for Software Testing, cofounder of the Workshop on Performance and Reliability, and coauthor

of Performance Testing Guidance for Web Applications (Microsoft Press). He is widely recognized as

a thought leader in software performance testing and is an international keynote speaker. A

trainer of software testers, Mr. Barber is an AST-certified On-Line Lead Instructor who has

authored over 100 educational articles on software testing. He is a member of ACM, IEEE,

American Mensa, and the Context-Driven School of Software Testing, and is a signatory to the

Manifesto for Agile Software Development. See http://www.perftestplus.com/ScottBarber for more

information.

317

http://www.perftestplus.com/ScottBarber

REX BLACK, who has a quarter-century of software and systems engineering experience, is

president of RBCS, a leader in software, hardware, and systems testing. For over 15 years,

RBCS has delivered services in consulting, outsourcing, and training for software and hardware

testing. Employing the industry’s most experienced and recognized consultants, RBCS

conducts product testing, builds and improves testing groups, and hires testing staff for

hundreds of clients worldwide. Ranging from Fortune 20 companies to startups, RBCS clients

save time and money through improved product development, decreased tech support calls,

improved corporate reputation, and more. As the leader of RBCS, Rex is the most prolific

author practicing in the field of software testing today. His popular first book, Managing the

Testing Process (Wiley), has sold over 35,000 copies around the world, including Japanese,

Chinese, and Indian releases, and is now in its third edition. His five other books on testing,

Advanced Software Testing: Volume I, Advanced Software Testing: Volume II (Rocky Nook), Critical

Testing Processes (Addison-Wesley Professional), Foundations of Software Testing (Cengage), and

Pragmatic Software Testing (Wiley), have also sold tens of thousands of copies, including Hebrew,

Indian, Chinese, Japanese, and Russian editions. He has written over 30 articles, presented

hundreds of papers, workshops, and seminars, and given about 50 keynotes and other speeches

at conferences and events around the world. Rex has also served as the president of the

International Software Testing Qualifications Board and of the American Software Testing

Qualifications Board.

EMILY CHEN is a software engineer working on OpenSolaris desktop. Now she is responsible

for the quality of Mozilla products such as Firefox and Thunderbird on OpenSolaris. She is

passionate about open source. She is a core contributor of the OpenSolaris community, and

she worked on the Google Summer of Code program as a mentor in 2006 and 2007. She

organized the first-ever GNOME.Asia Summit 2008 in Beijing and founded the Beijing GNOME

Users Group. She graduated from the Beijing Institute of Technology with a master’s degree

in computer science. In her spare time, she likes snowboarding, hiking, and swimming.

ADAM CHRISTIAN is a JavaScript developer doing test automation and AJAX UI development.

He is the cocreator of the Windmill Testing Framework, Mozmill, and various other open

source projects. He grew up in the northwest as an avid hiker, skier, and sailer and attended

Washington State University studying computer science and business. His personal blog is at

http://www.adamchristian.com. He is currently employed by Slide, Inc.

ISAAC CLERENCIA is a software developer at eBox Technologies. Since 2001 he has been

involved in several free software projects, including Debian and Battle for Wesnoth. He, along

with other partners, founded Warp Networks in 2004. Warp Networks is the open source–

oriented software company from which eBox Technologies was later spun off. Other interests

of his are artificial intelligence and natural language processing.

JOHN D. COOK is a very applied mathematician. After receiving a Ph.D. in from the University

of Texas, he taught mathematics at Vanderbilt University. He then left academia to work as a

software developer and consultant. He currently works as a research statistician at M. D.

Anderson Cancer Center. His career has been a blend of research, software development,

318 A P P E N D I X

http://www.rbcs-us.com
http://www.adamchristian.com

consulting, and management. His areas of application have ranged from the search for oil

deposits to the search for a cure for cancer. He lives in Houston with his wife and four

daughters. He writes a blog at http://www.johndcook.com/blog.

LISA CRISPIN is an agile testing coach and practitioner. She is the coauthor, with Janet Gregory,

of Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-Wesley). She works as the

director of agile software development at Ultimate Software. Lisa specializes in showing testers

and agile teams how testers can add value and how to guide development with business-facing

tests. Her mission is to bring agile joy to the software testing world and testing joy to the agile

development world. Lisa joined her first agile team in 2000, having enjoyed many years

working as a programmer, analyst, tester, and QA director. From 2003 until 2009, she was a

tester on a Scrum/XP team at ePlan Services, Inc. She frequently leads tutorials and workshops

on agile testing at conferences in North America and Europe. Lisa regularly contributes articles

about agile testing to publications such as Better Software magazine, IEEE Software, and Methods

and Tools. Lisa also coauthored Testing Extreme Programming (Addison-Wesley) with Tip House.

For more about Lisa’s work, visit http://www.lisacrispin.com.

ADAM GOUCHER has been testing software professionally for over 10 years. In that time he has

worked with startups, large multinationals, and those in between, in both traditional and agile

testing environments. A believer in the communication of ideas big and small, he writes

frequently at http://adam.goucher.ca and teaches testing skills at a Toronto-area technical college.

In his off hours he can be found either playing or coaching box lacrosse—and then promptly

applying lessons learned to testing. He is also an active member of the Association for Software

Testing.

MATTHEW HEUSSER is a member of the technical staff (“QA lead”) at Socialtext and has spent

his adult life developing, testing, and managing software projects. In addition to Socialtext,

Matthew is a contributing editor for Software Test and Performance Magazine and an adjunct

instructor in the computer science department at Calvin College. He is the lead organizer of

both the Great Lakes Software Excellence Conference and the peer workshop on Technical

Debt. Matthew’s blog, Creative Chaos, is consistently ranked in the top-100 blogs for

developers and dev managers, and the top-10 for software test automation. Equally important,

Matthew is a whole person with a lifetime of experience. As a cadet, and later officer, in the

Civil Air Patrol, Matthew soloed in a Cessna 172 light aircraft before he had a driver’s license.

He currently resides in Allegan, Michigan with his family, and has even been known to coach

soccer.

KAREN N. JOHNSON is an independent software test consultant based in Chicago, Illinois. She

views software testing as an intellectual challenge and believes in context-driven testing. She

teaches and consults on a variety of topics in software testing and frequently speaks at software

testing conferences. She’s been published in Better Software and Software Test and Performance

magazines and on InformIT.com and StickyMinds.com. She is the cofounder of WREST, the

Workshop on Regulated Software Testing. Karen is also a hosted software testing expert on

Tech Target’s website. For more information about Karen, visit http://www.karennjohnson.com.

C O N T R I B U T O R S 319

http://www.johndcook.com/blog
http://www.lisacrispin.com
http://adam.goucher.ca
http://xndev.blogspot.com
http://www.context-driven-testing.com/
http://informit.com
http://stickyminds.com
http://www.wrestworkshop.com/Home.html
http://searchsoftwarequality.techtarget.com/expert/KnowledgebaseBio/0,289623,sid92_cid1093127,00.html
http://www.karennjohnson.com

KAMRAN KHAN contributes to a number of open source office projects, including AbiWord (a

word processor), Gnumeric (a spreadsheet program), libwpd and libwpg (WordPerfect

libraries), and libgoffice and libgsf (general office libraries). He has been testing office software

for more than five years, focusing particularly on bugs that affect reliability and stability.

TOMASZ KOJM is the original author of Clam AntiVirus, an open source antivirus solution.

ClamAV is freely available under the GNU General Public License, and as of 2009, has been

installed on more than two million computer systems, primarily email gateways. Together with

his team, Tomasz has been researching and deploying antivirus testing techniques since 2002

to make the software meet mission-critical requirements for reliability and availability.

MICHELLE LEVESQUE is the tech lead of Ads UI at Google, where she works to make useful,

beautiful ads on the search results page. She also writes and directs internal educational videos,

teaches Python classes, leads the readability team, helps coordinate the massive postering of

Google restroom stalls with weekly flyers that promote testing, and interviews potential chefs

and masseuses.

CHRIS MCMAHON is a dedicated agile tester and a dedicated telecommuter. He has amassed a

remarkable amount of professional experience in more than a decade of testing, from telecom

networks to social networking, from COBOL to Ruby. A three-time college dropout and former

professional musician, librarian, and waiter, Chris got his start as a software tester a little later

than most, but his unique and varied background gives his work a sense of maturity that few

others have. He lives in rural southwest Colorado, but contributes to a couple of magazines,

several mailing lists, and is even a character in a book about software testing.

MURALI NANDIGAMA is a quality consultant and has more than 15 years of experience in

various organizations, including TCS, Sun, Oracle, and Mozilla. Murali is a Certified Software

Quality Analyst, Six Sigma lead, and senior member of IEEE. He has been awarded with

multiple software patents in advanced software testing methodologies and has published in

international journals and presented at many conferences. Murali holds a doctorate from the

University of Hyderabad, India.

BRIAN NITZ has been a software engineer since 1988. He has spent time working on all aspects

of the software life cycle, from design and development to QA and support. His

accomplishments include development of a dataflow-based visual compiler, support of

radiology workstations, QA, performance, and service productivity tools, and the successful

deployment of over 7,000 Linux desktops at a large bank. He lives in Ireland with his wife and

two kids where he enjoys travel, sailing, and photography.

NEAL NORWITZ is a software developer at Google and a Python committer. He has been

involved with most aspects of testing within Google and Python, including leading the Testing

Grouplet at Google and setting up and maintaining much of the Python testing infrastructure.

He got deeply involved with testing when he learned how much his code sucked.

ALAN PAGE began his career as a tester in 1993. He joined Microsoft in 1995, and is currently

the director of test excellence, where he oversees the technical training program for testers and

320 A P P E N D I X

various other activities focused on improving testers, testing, and test tools. Alan writes about

testing on his blog, and is the lead author on How We Test Software at Microsoft (Microsoft Press).

You can contact him at alan.page@microsoft.com.

TIM RILEY is the director of quality assurance at Mozilla. He has tested software for 18 years,

including everything from spacecraft simulators, ground control systems, high-security

operating systems, language platforms, application servers, hosted services, and open source

web applications. He has managed software testing teams in companies from startups to large

corporations, consisting of 3 to 120 people, in six countries. He has a software patent for a

testing execution framework that matches test suites to available test systems. He enjoys being

a breeder caretaker for Canine Companions for Independence, as well as live and studio sound

engineering.

MARTIN SCHRÖDER studied computer science at the University of Würzburg, Germany, from

which he also received his master’s degree in 2009. While studying, he started to volunteer in

the community-driven Mozilla Calendar Project in 2006. Since mid-2007, he has been

coordinating the QA volunteer team. His interests center on working in open source software

projects involving development, quality assurance, and community building.

DAVID SCHULER is a research assistant at the software engineering chair at Saarland University,

Germany. His research interests include mutation testing and dynamic program analysis,

focusing on techniques that characterize program runs to detect equivalent mutants. For that

purpose, he has developed the Javalanche mutation-testing framework, which allows efficient

mutation testing and assessing the impact of mutations.

CLINT TALBERT has been working as a software engineer for over 10 years, bouncing between

development and testing at established companies and startups. His accomplishments include

working on a peer-to-peer database replication engine, designing a rational way for

applications to get time zone data, and bringing people from all over the world to work on

testing projects. These days, he leads the Mozilla Test Development team concentrating on QA

for the Gecko platform, which is the substrate layer for Firefox and many other applications.

He is also an aspiring fiction writer. When not testing or writing, he loves to rock climb and

surf everywhere from Austin, Texas to Ocean Beach, California.

REMKO TRONÇON is a member of the XMPP Standards Foundation’s council, coauthor of

several XMPP protocol extensions, former lead developer of Psi, developer of the Swift Jabber/

XMPP project, and a coauthor of the book XMPP: The Definitive Guide (O’Reilly). He holds a

Ph.D. in engineering (computer science) from the Katholieke Universiteit Leuven. His blog can

be found at http://el-tramo.be.

LINDA WILKINSON is a QA manager with more than 25 years of software testing experience.

She has worked in the nonprofit, banking, insurance, telecom, retail, state and federal

government, travel, and aviation fields. Linda’s blog is available at http://practicalqa.com, and

she has been known to drop in at the forums on http://softwaretestingclub.com to talk to her

Cohorts in Crime (i.e., other testing professionals).

C O N T R I B U T O R S 321

http://blogs.msdn.com/alanpa
mailto:alan.page@microsoft.com
http://cci.org
http://oreilly.com/catalog/9780596157197/
http://el-tramo.be
http://practicalqa.com
http://softwaretestingclub.com

JEFFREY YASSKIN is a software developer at Google and a Python committer. He works on the

Unladen Swallow project, which is trying to dramatically improve Python’s performance by

compiling hot functions to machine code and taking advantage of the last 30 years of virtual

machine research. He got into testing when he noticed how much it reduced the knowledge

needed to make safe changes.

ANDREAS ZELLER is a professor of software engineering at Saarland University, Germany. His

research centers on programmer productivity—in particular, on finding and fixing problems

in code and development processes. He is best known for GNU DDD (Data Display Debugger),

a visual debugger for Linux and Unix; for Delta Debugging, a technique that automatically

isolates failure causes for computer programs; and for his work on mining the software

repositories of companies such as Microsoft, IBM, and SAP. His recent work focuses on

assessing and improving test suite quality, in particular mutation testing.

322 A P P E N D I X

C O L O P H O N

The cover image is from Getty Images. The cover fonts are Akzidenz Grotesk and Orator. The

text font is Adobe’s Meridien; the heading font is ITC Bailey.

	Table of Contents
	Preface
	How This Book Is Organized
	Part I, Beautiful Testers
	Part II, Beautiful Process
	Part III, Beautiful Tools

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 8
	Contributors
	Colophon

