
Several months ago, I attended a status
meeting for a medium-sized software
project. The product was in its fifth 
release and contained about five million
lines of code. The project lead, Larry,
was new to the company but had years of
experience shipping software. Ron, the test
manager, had less experience shipping soft-
ware but had been with the group for the
previous two releases. 

Ron began by showing us a spreadsheet
filled with dozens of rows containing 
various criteria that his team was measuring.
Each cell of data was highlighted with red,
yellow, or green—imitating the colors of 
a traffic light. Green meant that the 
particular measurement met or exceeded
expectations. Yellow meant there was a
slight deviation from the expected output,
and red meant—well, red meant trouble.

The list of metrics was enormous. His
team measured two different types of
code coverage, seven different views of
test case reporting, more than ten different
performance metrics, and too many 
different types of bug metrics to count.
The team tracked and reported data
gathered by static and runtime analysis
tools. It had metrics representing data
from product support, customer sites,
and internal users. The amount of data
gathered was enormous. Ron walked
through the spreadsheet, highlighting the
status of each measurement. He gave a
brief explanation for each green area and
explained how and when each yellow
and red metric would achieve green status.
Everyone seemed overwhelmed by the
amount of data available, but most
thought that the data was a complete
representation of the product quality.

At this point Larry, the project lead,
asked Ron if he knew for sure whether a
particular component was meeting the
expected reliability needs. Ron responded,
“I’m not sure. That isn’t one of the things
we’re tracking.” 

“Hmm.. .” replied Larry. “Marketing
really wants reliability data for that 
component. In fact, the reliability statistics

Despite the best intentions and sincerity
of those running the metrics programs,
time and time again these metrics projects
fail. In fact, many metrics experts claim
that 80 percent of software metrics 
initiatives fail. Implementing a successful
metrics program is difficult, but there
are some things you can do to give 
yourself a better chance of success.

One successful method for improving
the odds of success is to determine the
business and customer goals of the 
product first and then choose only to
measure criteria that support these goals.
The Goal/Question/Metric (GQM) is one
popular method for developing useful
metrics. The GQM system consists of
three steps:

1. Generate a set of goals based on the
needs of the organization or business.

2. Develop a set of questions that will
let us know whether we are meeting
our goals.

3. Develop a set of metrics that provides
answers to these questions.

for that component and the ability of the
component to meet performance criteria are
the two most important goals of this release.
By the way,” Larry continued, “do you have
performance numbers on this component?”

“Well. . .” Ron replied hesitantly.
“Tracking that wasn’t on our radar, but
we can add some metrics for that soon.” 

Larry interrupted again. “Ron, now
that I think about it, can you give me a
quick explanation of some of the metrics
you are tracking? What do they tell us
about the product?”

Ron, who now was a bit rattled,
stammered, “Most of these are things
we’ve always measured. Others are
things that seemed interesting to measure.
We need to measure as much as we can to
get a good idea of how the project is doing.”

“Let’s talk about this some more after
the meeting,” said Larry. “I have some
other approaches for you to consider.”

There are thousands of criteria that
can be used to measure software. Software
teams do their best to choose a set of 
metrics and determine the best way to 
organize these measurements in order to
help them understand their progress. 

From the Front Line

Measurements that Matter
by Alan Page

8 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com

G
ET

TY
 IM

A
G

ES



From the Front Line

www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 9

There are other metrics paradigms
similar to GQM, but regardless of the
method, an important step for success in
any metrics program is to make sure that
everything that is measured relates to and
supports a business or organizational
goal. Measuring the wrong things will
give you a false sense of progress and
probably won’t give you the information
that your project needs. Additionally, 
a top-down approach, such as GQM,
guarantees that management will 
understand and support the set of metrics
you are gathering.

For example, consider that one of the
goals for your project is to improve code
quality. One of the questions for this goal
may be “What are indicators of code
quality?” Metrics you may find supportive
of this question include number of bugs,
number of particular types of bugs, 
number of regressions, code coverage 
results, or test pass/fail rates. There are
no magic metrics, and no set of metrics
will support the same goal for everyone.
In adopting a goal-oriented metrics 
program, chances are you won’t need to
define metrics that you aren’t already col-
lecting. In fact, you will inevitably end up
measuring less than you are with your
current program.

I also advise tracking a set of relative
metrics for each goal. Even if you are
measuring the right things, your metrics
project may fail if it is possible to manipulate
the value of a metric without providing any
real progress. For example, if you are 
measuring code churn—the percentage of
lines changed, the percentage of lines
deleted, and the percentage of files
changed—this group of related metrics
will give you a more valuable view than
any one of these measures in isolation.

I recently attended a status meeting
for the same project. As in the previous
meeting, Ron presented a spreadsheet
decorated in stoplight colors, but he 
began his status presentation by reiterating
the top-level goals for the project. Then he
showed the status of the metrics that 
supported each goal. Unlike the previous
meeting, everyone in the room knew the
relevance of the metrics to the project
goals. By the end of the presentation,
everyone knew there was still work to
do, but they knew exactly what deficiencies

using each particular measurement. 

■ Don’t let your metrics define the
behavior of your team. If the metrics
you have chosen can be modified
without showing an increase or
decrease in quality, either change the
metrics or choose a set of relative
metrics that cannot be manipulated.

■ Monitor the metrics from version to
version throughout the project. Just as
you measure the project to assess
quality, you should measure the metrics
program to define areas for
improvement and identify trends you
can use to provide better information to
the project team. {end}

Alan Page is test architect for Microsoft’s 
Engineering Excellence
Group, where he works with
product teams across the
company to identify and pro-
mote best practices in testing.

existed for each goal. Additionally, 
everyone viewed these metrics as important
and relevant. The quality of the software
didn’t suddenly get better due to the 
improved metrics program, but the 
understanding of the overall quality 
of the project, including an accurate 
assessment of the risks, led to a much
more successful project.

Some key points to remember as you 
develop your program are:

■ Don’t try to measure too much. Just
because you can measure something
doesn’t mean that you should.

■ Understand the goals of your project
before you determine what to measure.

■ Once you determine the goals for
your project, determine which metrics
support these goals. Try to choose from
existing metrics rather than defining
new ones. The important point to note
is that now you know why you are


