
www.StickyMinds.com SEPTEMBER 2006 BETTER SOFTWARE 43

The Last Word

I’m Tired of Finding Bugs
by Alan Page

I have been testing software for more
than thirteen years, and I’m tired of
finding bugs. It isn’t that I regard finding
bugs as unimportant—I would much
rather find a bug myself than have a
customer find it. And I’m certainly not
tired of testing, but the goal of testing isn’t
to find bugs. The tester is responsible
for exercising the product, reporting
information, and many other activities;
finding bugs is merely a side effect. I am
tired of testers finding too many defects
that should have been found much earlier
or never introduced in the first place. We
find too many issues too late in the
product cycle and let too many bugs get
through to the customer. I don’t want to
find bugs anymore; I want to prevent
them from happening.

I read a lot about software testing,
but the books, blogs, articles, and other
materials seem to focus primarily on
approaches for finding bugs. Popular
techniques, such as exploratory testing
and error-guessing, can be effective
tools, but they are focused on finding.
These and any other approaches
predominantly intended to discover errors
already in the code are attempting to
achieve quality through testing. In other
words, they attempt to “test quality into
the product.”

Nearly every book on software engi-
neering has a chart or graph that
demonstrates how the cost of fixing a
bug increases the later it is found in the
product cycle. If everyone agrees this is
the case, why are we not doing more to
find bugs earlier? Many engineering
teams are beginning to involve testing
early in the product cycle, and I think
this is a good trend. I have heard the
shouts of “Let’s drive quality upstream!”
for years, but I still think we aren’t doing
nearly enough.

How can we reach higher levels of
quality and find fewer bugs late in the
engineering cycle? Most efforts to drive
quality upstream involve testers’ reviewing
specifications early and creating test

did prevent the bug from ever finding its
way into the product we were testing.
Furthermore, due to the checks, the
developers quickly learned to use the
library function correctly.

After that success, every time I found
any error that could be detected through
automated code analysis, I wrote a routine
to detect the error and then turned the
detection into prevention by adding the
script to the check-in routine. By the time
the product shipped, there were dozens
of checks preventing hundreds of bugs.

Prevention techniques do not need to
be tools. I recently was working on a
project where a significant number of
design-related errors were occurring in
one team area. I could not devise a way
to automatically detect the issues, but I
was convinced an informal code review
would have caught them. I showed the
problem to the manager in charge of this
area, and he agreed with my assessment.
Shortly thereafter he began requiring a
code review for every new design imple-
mentation or change. After that, I saw
very few design errors from that team.
Better yet, other errors I had missed also
were prevented.

Defect prevention ultimately requires
some investigation into the underlying

cases or models from the specifications
or early prototypes. These are certainly
much better methodologies than waiting
for code to be “thrown over the wall” to
the test team, but a considerably better
solution is to prevent bugs from hap-
pening in the first place. As software
complexity increases, some bugs may be
inevitable—but most are preventable.

Software bugs usually exist because
someone made an error. The person
writing the specification may have acci-
dentally left out a detail, a developer
may have made a typographical error, or
the wrong library function may have been
used. Can human errors be prevented? Of
course they can. Shigeo Shingo, an
industrial engineer from Japan, invented
a concept called poka-yoke (“avoiding
inadvertent errors”). In a manufacturing
plant, poka-yoke may be implemented
by putting a notch on a widget so it can
only be attached to a larger widget in a
specific position.

Every day, I encounter dozens of
systems put in place to prevent human
errors. The circuit breaker in my fuse
box prevents my overloading an outlet
and starting a fire. My bathroom sink has
a small hole near the top that prevents me
from overfilling it. My favorite example
is that my new car will not lock if the
keys are inside.

Prevention techniques are just as
applicable to software. I once worked
on a project where I filed a handful of
bugs against various components that
were using a library function incorrectly.
The error was an easy one to make and
did not cause an obvious bug, but it did
cause a significant performance problem
and memory leak. After I tracked down
the problem, I wrote a quick code-scan-
ning script to detect all occurrences of
the error across the entire product
source. Once the relevant bugs were
filed, I added this script to the list of
checks that were run every time a developer
checked in code. While I did not actually
prevent the initial creation of this bug, I

44 BETTER SOFTWARE SEPTEMBER 2006 www.StickyMinds.com

Display Advertising

Shae Young syoung@sqe.com

All Other Inquiries

info@bettersoftware.com

Better Software (USPS: 019-578, ISSN: 1532-3579) is
published eleven times per year. Subscription rate
is US $75 per year. A US $35 shipping charge is
incurred for all non-US addresses. Payments to
Software Quality Engineering must be made
in US funds drawn from a US bank. For more
information, contact info@bettersoftware.com
or call (800) 450-7854. Back issues may be
purchased for $15 per issue (plus shipping).
Volume discounts available.

Entire contents © 2006 by Software Quality
Engineering (330 Corporate Way, Suite 300, Orange
Park, FL 32073), unless otherwise noted on specific
articles. The opinions expressed within the articles
and contents herein do not necessarily express
those of the publisher (Software Quality Engineering).
All rights reserved. No material in this publication
may be reproduced in any form without permission.
Reprints of individual articles available. Call for details.

Periodicals Postage paid in Orange Park, FL,
and other mailing offices. POSTMASTER: Send
address changes to Better Software,
330 Corporate Way, Suite 300, Orange Park, FL 32073,
info@bettersoftware.com.

Index to Advertisers

American Society for Quality www.asq.org 24

AutomatedQA www.automatedqa.com Inside Back Cover

Empirix www.empirix.com 17

IBM ibm.com/takebackcontrol/flexible 10

iTKO, Inc www.iTKO.com/lisa 19

Mercury Interactive Corporation www.mercury.com Inside Front Cover

mVerify Corporation www.mVerify.com 13

NVP Software Testing www.nvp-inc.com 16

Parasoft Corporation www.parasoft.com 8

PNSQC www.pnsqc.org 31

ProjectWorld www.projectworld.com 42

Rally Software www.rallydev.com/bsm 41

Seapine Software www.seapine.com 2

Smart Bear Software smartbearsoftware.com 44

Software Quality Engineering Training www.sqe.com/training.asp 25

Software Quality Solutions (SQS) www.sqs.com Back Cover

STARWEST 2006 www.sqe.com/starwest 15

StickyMinds.com www.StickyMinds.com 5

Telelogic www.telelogic.com Opposite 7

Visual Studio 2005 Team System Training www.sqe.com/trainingprograms 40

Worksoft www.worksoft.com 1

The Last Word

cause of the bug. There are several methods for analyzing
bugs to determine the core origin of an issue, but I have expe-
rienced a great deal of personal success using a much lighter
form of analysis. The best part of my technique is that I get to
act like a three-year-old. Every time I find a bug, I ask as
many “Why?” questions as it takes to get to a point where I
can implement a prevention technique. Why did this bug
occur? Why was that particular function used? Why was it
possible for them to use the function incorrectly? Why was
this error not caught in the code review? I can’t guarantee
that these questions will uncover a prevention technique for
every bug, but every prevention technique you find and
implement will significantly reduce the number of bugs left
for you to find later.

Software will continue to have bugs for many years to
come. I can accept this fact, but I cannot accept the sheer
number of bugs we allow—and expect—testers to find. If we
want to be serious about quality, it is time to get tired of finding
bugs and start preventing their happening in the first place. {end}

Alan Page is a test architect in Microsoft’s Engineering
Excellence group, where he develops and conducts training for
testers and works with product teams across the company to
identify and promote best practices in testing. Email Alan at
alanpa@microsoft.com.

